یادگیری عمیق (مجموعه محاسبات تطبیقی و یادگیری ماشین)
مقدمه ای بر طیف گسترده ای از موضوعات در یادگیری عمیق، که زمینه های ریاضی و مفهومی، تکنیک های یادگیری عمیق مورد استفاده در صنعت و دیدگاه های پژوهشی را پوشش می دهد.
"آموزش عمیق که توسط سه متخصص در این زمینه نوشته شده است، تنها کتاب جامع در این زمینه است."
- ایلان ماسک، رئیس مشترک OpenAI؛ بنیانگذار و مدیرعامل تسلا و اسپیس ایکس
یادگیری عمیق شکلی از یادگیری ماشینی است که رایانه ها را قادر می سازد از تجربیات بیاموزند و جهان را بر اساس سلسله مراتبی از مفاهیم درک کنند. از آنجا که کامپیوتر دانش را از تجربه جمع آوری می کند، نیازی نیست که یک اپراتور کامپیوتر انسانی به طور رسمی تمام دانش مورد نیاز کامپیوتر را مشخص کند. سلسله مراتب مفاهیم به رایانه اجازه می دهد تا مفاهیم پیچیده را با ساختن آنها از مفاهیم ساده تر یاد بگیرد. نموداری از این سلسله مراتب چندین لایه عمیق خواهد بود. این کتاب طیف گسترده ای از موضوعات را در یادگیری عمیق معرفی می کند.
این متن پسزمینههای ریاضی و مفهومی را ارائه میدهد که مفاهیم مرتبط در جبر خطی، نظریه احتمالات و نظریه اطلاعات، محاسبات عددی و یادگیری ماشین را پوشش میدهد. این تکنیکهای یادگیری عمیق را که توسط پزشکان در صنعت استفاده میشود، توصیف میکند، از جمله شبکههای پیشخور عمیق، منظمسازی، الگوریتمهای بهینهسازی، شبکههای کانولوشن، مدلسازی توالی، و روششناسی عملی. و برنامه هایی مانند پردازش زبان طبیعی، تشخیص گفتار، بینایی کامپیوتر، سیستم های توصیه آنلاین، بیوانفورماتیک و بازی های ویدیویی را بررسی می کند. در نهایت، این کتاب دیدگاههای پژوهشی را ارائه میکند که موضوعات نظری مانند مدلهای عامل خطی، رمزگذارهای خودکار، یادگیری بازنمایی، مدلهای احتمالی ساختاریافته، روشهای مونت کارلو، تابع تقسیم، استنتاج تقریبی و مدلهای مولد عمیق را پوشش میدهد.
یادگیری عمیق را می توان توسط دانشجویان کارشناسی یا کارشناسی ارشد برنامه ریزی مشاغل در صنعت یا تحقیقات و مهندسان نرم افزاری که می خواهند از یادگیری عمیق در محصولات یا پلتفرم های خود استفاده کنند، استفاده کرد. یک وب سایت مطالب تکمیلی را هم برای خوانندگان و هم برای مربیان ارائه می دهد.
Deep Learning (Adaptive Computation and Machine Learning series)
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
“Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.”
—Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Product details
- Publisher : The MIT Press (November 18, 2016)
- Language : English
- Hardcover : 800 pages
- ISBN-10 : 0262035618
- ISBN-13 : 978-0262035613
- Reading age : 18 years and up
- Grade level : 12 and up
- Item Weight : 2.54 pounds
- Dimensions : 9.1 x 7.2 x 1.1 inches